Software per la programmazione lineare

SSC (Software for Simplex Calculation) è una libreria Java open-source per la risoluzione di problemi di programmazione lineare. Distribuita come software libero (FOSS: free and open-source software), SSC è disponibile per il download su GitHub e Maven. La libreria è corredata da esempi e da una documentazione completa e offre un'integrazione semplice nei progetti Java, rendendola ideale per chiunque cerchi una soluzione efficiente per problemi di ottimizzazione.

La libreria SSC supporta la formulazione del problema di programmazione lineare in diversi formati: testo, coefficienti, matriciale, sparso e anche in formato JSON. È possibile specificare il problema direttamente nel codice o attraverso un file esterno, semplificando l'integrazione con progetti esistenti e facilitando la gestione di input complessi.

La libreria SSC è inoltre in grado di risolvere problemi di programmazione lineare con variabili semicontinue e supporta Special Ordered Sets (SOS) di tipo 1 e 2. Questo permette di affrontare una vasta gamma di problemi di ottimizzazione complessi, come quelli che richiedono la selezione di variabili binarie o la gestione di variabili consecutive con vincoli particolari.

SSC utilizza l'algoritmo del Simplesso per risolvere questa classe di problemi, comunemente indicati con la sigla LP (Linear Programming), ma supporta anche problemi con variabili libere, intere, binarie, semicontinue e semicontinue intere, comunemente noti come MILP (Mixed Integer Linear Programming). Per la risoluzione di MILP, che includono variabili intere o binarie, SSC adotta l'algoritmo del Branch and Bound (B&B) .

Online LP Solver

La libreria di programmazione lineare SSC ora è ancora più versatile: oltre a documentazione completa ed esempi pratici, puoi sfruttarla direttamente online con il risolutore Online LP Solver. Grazie al motore interno SSC-LP, puoi risolvere problemi di programmazione lineare comodamente dal tuo browser, ottenendo risultati rapidi.

Un problema da risolvere

La forma di problemi che le API fornite da SSC risolvono è la seguente :

\( \hspace{3cm} \text{ max/min } \hspace{0.3cm} c^{\mathrm{T}}x \hspace{1cm} \text{è la funzione obiettivo (f.o.) } \)

vincolato a :

\( \hspace{3cm} Ax\, (\le , = , \ge)\, b \)
\( \hspace{3cm} l_{i} \le x_{i} \le u_{i} \hspace{0.5cm} \)
\( \hspace{3cm} x_{i} \in \mathbb{Z} \hspace{1.6cm} \forall i \in \text{I} \)
\( \hspace{3cm} x_{i} \in \{0,1\} \hspace{0.8cm} \forall i \in \text{B} \)
\( \hspace{3cm} x_{i} \in \mathbb{R} \hspace{1.6cm} \forall i \notin (\text{I} \cup \text{B}) \)

dove:

\( \hspace{3cm} x\, \in \mathbb{R}^{n} \hspace{5cm} \text{è il vettore delle variabili}\, x_{i} \)
\( \hspace{3cm} A \in \mathbb{Q}^{m \times n} \hspace{4.4cm} \text{è la matrice dei coefficienti} \)
\( \hspace{3cm} c\,\, \in \mathbb{Q}^{n} \hspace{5cm} \text{è il vettore dei coefficienti della f.o.} \)
\( \hspace{3cm} b\,\, \in \mathbb{Q}^{m} \hspace{4.9cm} \text{è il vettore dei coefficienti RHS} \)
\( \hspace{3cm} l\,\,\, \in \mathbb{Q}^{n} \hspace{5cm} \text{è il vettore dei lower bound }\, l_{i} \)
\( \hspace{3cm} u\, \in \mathbb{Q}^{n} \hspace{5cm} \text{è il vettore degli upper bound }\, u_{i} \)
\( \hspace{3cm} \text{I}\,\, \subseteq \{1,..,n\} \hspace{3.7cm} \text{è un sottoinsieme degli indici relativo alla variabili intere} \)
\( \hspace{3cm} \text{B} \subseteq \{1,..,n\}\, : \, (\text{I} \cap \text{B}) = \emptyset \hspace{0.9cm} \text{è un sottoinsieme degli indici relativo alla variabili binarie} \)

Dettagli

Il metodo del simplesso puo' essere suddiviso in due fasi. Nella fase 1 si trova una soluzione di base ammissibile, mentre nella fase 2 si trova una soluzione ottimale. La procedura gestisce variabili libere, variabili delimitate inferiormente e superiormente e le diverse gamme di vincoli. Se non vengono specificati limiti inferiori espliciti, SSC definisce le variabili delimitate inferiormente dallo zero (variabili non negative).

In SSC quando una variabile viene definita come una variabile intera o binaria, la procedura utilizza l'algoritmo del Branch and Bound per l'ottimizzazione. Nel Branch and Bound si risolve una successione di problemi rilassati (ovvero privati dei vincoli di interezza); per risolvere questi problemi rilassati si utilizza l'algoritmo del Simplesso.

Requisiti tecnici

Il requisito per far eseguire i programmi SSC è quello di poter disporre di un JDK (o SDK) java versione 10.x o successive. Nessun altro requisito è richiesto.